Bose Einstein Scholarship Test

An endeavour of International Research Scholars and Mentors with JMMC Research Foundation

Sample Question for Class - 8

1. If $x^{2}+y^{2}=\theta_{3} x y, y^{2}+z^{2}=\theta_{1} y z$, and $z^{2}+x^{2}=\theta_{2} z x$

Then $\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}-\theta_{1} \theta_{2} \theta_{3}=$?
(a) 0
(b) 2
(c) 4
(d) 6
2. Find the value of λ

Where $(99)^{\frac{1}{\lambda}} \times(99)^{\frac{2}{\lambda}} \times(99)^{\frac{3}{\lambda}} \times \ldots \times(99)^{\frac{2019}{\lambda}}=970299$
(a) 1359460
(b) 1534960
(c) 1349650
(d) 1345690
3. Find the number of digits in the number $2^{2019} \times 5^{2007}$ when written in full
(a) 2007
(b) 2009
(c) 2011
(d) 2012
4. In a quadrilateral $A B C D$, reflect A at C to P, B at D to Q, C at A to R, D at B to S, then (area of ABCD) : (area of PQRS) is
(a) $1: 9$
(b) $1: 3$
(c) $2: 5$
(d) $2: 7$
5. Find the remainder when 2^{2019} is divided by 19
(a) 1
(b) 8
(c) 13
(d) 17
6. The sum of the powers of the vertices of a $\triangle A B C$, with respect to its nine point circle is
(a) $\frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right)$
(b) $\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)$
(c) $\frac{1}{9}\left(a^{3}+b^{3}+c^{3}\right)$
(d) none of these
7. By Heron's formula we know that, area of $\triangle A B C=\Delta=\sqrt{S(S-a)(S-b)(S-c)}$ where, $S=$ semiperimeter $=\frac{1}{2}(a+b+c)$ and a, b, c are the sides of the triangle. Now, if $r=\frac{\Delta}{S}$ and $r_{a}=\frac{\Delta}{S}-a$, then $r \cdot r_{a} \cdot r_{b} \cdot r_{c}=$?
(a) $\frac{\Delta^{2}}{(S-a)(S-b)}$
(b) Δ^{2}
(c) $\frac{\Delta^{3}}{a b c}$
(d) $\frac{\Delta^{4}}{S a b c}$
8. Find all natural numbers n such that the product of the non-zero digits of n is equal to $n^{2}-10 n-22$.
(a) 5
(b) 9
(c) 12
(d) 14
9. A right circular cone has base of radius 1 unit and height 3 units. A cube is inscribed in the cone so that one face of the cube is contained in the base of the cone. What is the side-length of the cube ?
(a) $\frac{(7 \sqrt{3}-6)}{9}$ units
(b) $\frac{(9 \sqrt{5}-7)}{6}$ units
(c) $\frac{(2 \sqrt{7}-\sqrt{5})}{9}$ units (d) $\frac{(9 \sqrt{2}-6)}{7}$ units

